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ABSTRACT

In this part, equations for pressure distributions and generalized
aerodynamic forces are derived for a thin nonplanar lifting surface in simple
harmonic motion at subsonic speeds. A digital computer program, written in
Fortran IV, is also presented herein. The computer program will generate
up to a ten by ten matrix of generalized aerodynamic forces when given data
for the geometry of a planar lifting surface with a folded planar tip, the flight
Mach number, the reduced frequency of motion, and some control constants.
Control surface deflections are not accounted for in this study.

The kernel function method given by Watkins, Runyan, and Woolston
(Reference 1), which relates the pressure distribution to the downwash on a
planar lifting surface, has been extended and applied to a nonplanar lifting
surface. Hsu's technique (Reference 4) of employing Gaussian quadrature
formulas ;.s used when integrating the product of the kernal function and the
lift function over the planform area.

Recommendations are made to extend the method to account for blunted
leading edges and the accompanying airfoil thickness and to account for
control surface deflections.
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SYMBOLS

a Local speed of sound (constart irx linear theory)

bo  Ro')t semichord

b (s) Local semichord

Cp Pr,.ssure coefficient

Cp Time independent factor of os cillatory, part of Cp

i,j,k Unit vectors parallel to the coordinate axes

k Reduced frequency, wbo/Uw

kl kr I

K Kernel function

K 0 , K1 , KZ  Modified Bessel functions of the second kind

M Local Mach number (same as free stream Mach number,
Mco, in linear theory)

n Coordinate measured normal to vv-ing surface

n(x, s, t) Contribution to n of elastic deforrxiation of the wing

nt (x, s) Contribution to n of wing thicknes s

n (x,s) Time independent factor of n(x, s, t)

p Pressure

q Fluid velocitr

R Gas constant

LUst of Symbols continued on next page.
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r2
I yrq)2 + (z- )

s Curvilinear coordinate on the wing (page 10)

T Absolute temperature

t Time

U, I Subscripts indicating upper and lower wing surfaces

u, v, w Components of perturbation velocity

U, W x- and z-components of V

U00 IVi (speed at infinity)

V Uniform fluid velocity at infiity

W Time independent factor of normal velocity

x, y, z Cartesian coordinates

X0  X- :

Yo Y- TI

Y Ratio of specific heats'

Y(s) Local angle between wing surface and xy-plane

Time independent factor of pressure difference between
wing surfaces, P j- u

i 1, Cartesian coordinates

Coordinate on the wing (page 22)

Velocity potential

Perturbation velocity potential

Time independent factor of cp

Acceleration potential

p Fluid density

W Angular frequency (radiana per unit time)
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I. INTRODUCTION

The first published numerical method for solving the subsonic pressure
distribution problem for planar lifting surfaces undergoing simple harmonic
motion was developed at NASA's Langley Research Center by Watkins,
Runyan, and Woolston (Reference 1). Watkins, et aL, presented two
methods of handling the numerical integration of the kernel function in the
region where high-order singularities exist. Both methods involved a dense
concentration of integration points in the neighborhood of the singularity.
Using these methods, it is possible to obtain downwash integrals, in terms
of the pressure-loading coefficients, at any arbitiary set of points on the
surface (e. g., at all the kinematic downwash points known from previously
determined vibration mode data). However, in order to reduce the running
time on the computer, the downwash integrals were obtained at a selected
set of collocation points, suchas those at intersections of quarter, half, and
three-quarter chord stations and like half-span stations. When downwashes
were matched exactly (and thus, boundary conditions) at these collocation
points, responsibility was placed upon the user to evaluate the kinematic
downwashes there. A least-square error surface fitted to the mode data was
commonly used to evaluate them. Furthermore, if the user desired that the
boundary colditions be satisfied at a greater number of points, it was neces-
sary that he use a correspondingly greater number of loading functions.

Procedures were then described by Rodaen and Revell (Reference Z)
and the correct form of the equations were presented by Fromme (Reference
3) for calculating pressure-loading coefficients which match a greater
number of kinematic downwashes than coefficients, in the sense that the sum
of squares of amplitudes of differences of complex numbers are minimized.
Since it was still the responsibility of the user to evaluate the kinematic
downwashes at the collocation point, least-square error procedures were
used twice: once implicitly and once explicitly.

Hsu (Reference 4) significantly advanced the logical development of the
kernel function approach when he established an optimum set of collocation
and integration points. He started with the previously established chordwise
pressure functions based on steady-state, two-dimensional, incompressible
aerodynamics, and with spanwise loading functions, based on steady-state
lifting-line theory. He concluded that there is sufficient reason to believe
that these functions display the proper characteristics near the edges of
lifting surfaces oscillating in a compressible fluid.

Manuscript released by authors February 1965 for publication as an RTD Technical Documentary Report.
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Returning to the two-dimensional case, Hsu established that if the
chordwise distribution of modal deflections (and thus downwashes) is accu-
rately represented by a polynomial of degree ZN-I and is approximated by
a polynomial of degree N-i, then the integral for the sectional load is eval-
uated with zero error by a N-point Gaussian quadrature if the difference
between the accurate and the approximate representation of the downwashes
is made equal to zero at each of the N points (i. e., the chordwise collocation
stations). Conversely, still for the two-dimensional case, Hsu established
that if the product of the pressure function and the kernel, divided by the
Jacobi-Gauss weight factor (which produces the square root singularity at
the leading edge), is accurately represented by a polynomial of degree
ZN-1, then the integral for the downwash at any one of the collocation
stations is evaluated with zero error by a N-point Gaussian quadrature.
These N points are then made the chordwise integration stations.

For the spanwise direction, using lifting-line theory, Hsu similarly
established M-spanwise collocation stations and M + 1 interdigitated spanwise
integration stations plus the conditions under which the Gaussian quadrature
can be used with zero error.

It is important to note that the kernel of the integral equation for the
downwashes in unsteady, three-dimensional, compressible flow cannot be
accurately represented by a polynomial of finite degree. It is equally
important to note, however, that, because of the edge characteristics of the
pressure and loading functions, the Gaussian quadratures employed at Hsu's
optimum point set evaluate the integrals with the least squared error for
a given number of integration points. We have yet to match the boundary
conditions using Hsu's method.

The downwash matching problem in Hsu's approach is basically the
same as in Watkin's approach; we merely have a more logical choice of
points at which to match them. In the examples Hsu used to demonstrate his
approach, he chose to use the same number of pressure-loading functions as
collocation points. However, the approach is not dependent upon that choice.
If a smaller number of pressure-loading functions are used, then the pro-
cedures described by Rodden, Revell, and Fromme may be used to compute
pressure-loading coefficients which yield a minimum sum of squares of
amplitudes of differences in down-washes.
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A need has arisen for application of the kernel function method to

rnon-pLanar lifting surfaces on future aerospace vehicles. Application

is also required to more conventional non-planar surfaces such as T-tail,

-tall. and wing-vertical tail combinations.

Professor H. Ashley outlined the application to the folded tip con-

figuration. A computer program based on Ashley's work was developed for

steady-state flow by L. Johnson, et al., of the Los Angeles Division of

North American Aviation, Inc.

The work reported herein is based on Professor Ashley's outline.

lowreve-, the expression for the kernel has been greatly simplified by

D]r. E. R. Rodemich of North American Aviation, Inc., Space and Information

Systems Division.
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il. FUNDAMENTAL EQUATIONS OF FLUID MOTION

Consider a body immersed in a compressible, nonviscous, perfect
fluid and assurfte the fluid flow to be isentropic and irrotational. Under these
conditions, a velocity potential , exists:

where j is the velocity vector of a fluid element and V is the gradient
operator (See Reference 4. ) Also under these conditions, the isentropic
(constant entropy) pressure-density relationship is valid. Thus,

a2 =Iap\ YRa : :Y RT (Z)
MOB

Other equations which govern the flow are the continuity equation for
conservation of mass

at5-+ "(p =0 (3)

and Euler's equations for conservation of momentum

Dq _-1
5F = Vp (4)

D
where, 5t the substantial derivative, is

D 8
Dt = 5t (5)

These equations may be combined, as described in Reference 5, to yield
the nonlinear, unsteady flow equation

2 F2g 23 c2l
Z L + 6 (6)

a 2- [ at2 z(q Vat ~-
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Consider, then, that the fluid motion consists of a perturbation super-

imposed on a uniform stream velocity V= Ui + Wk parallel to the xz-plane

of a rectangular Cartesian coordinate system. Then the velocity potential

may be expressed as the sum of a uniform part and a perturbation part

$- Ux + Wz + (7)

and, similarly, the velocity vector becomes

= V + VT= Vq? (8)

The pressure coefficient at any point in an isentropic flow field is

P - p.
Cp p= U= (9)

where p - pm.is the difference between local pressure and free-stream pres-
sure, U. = IVI, and 1/2 n- 173 is the frpp-at-rejs .. " . xin

TC l.e-', equation (.... rec 5) for isentropic flow[Y
z~ - q + 2 av ]Y-1

SI1 + i- MI ( - (10)

p 2I 2 00(l -l
YMC UJ

A complete statement of the fundamental problem requires specifica-
tion of the boundary conditions. The boundary conditions at infinity depend

upon the free-stream velocity. When it is less than the speed of sound in
the fluid, the disturbances to the flow die out and are not felt at infinity.
When it is greater than the sonic speed, then in the region where disturbances
are felt, even at infinity, the component of flow due to the disturbance is

directed away from the source of disturbance and otherwise the free-stream
flow is undisturbed. The boundary conditions at the surface of the body
require that the flow be tangent to the surface everywhere on the body. This

condition is satisfied by the equation

F- D (X, Y, Z t) 0



where

B (x, y, z, t) = 0 (1Z)

is the equation for the position of the surface at any time t, and the substan-

tial derivative D/Dt is defined by Equation 5.

7



111. LINEARIZED EQUATIONS OF MOTION

Linearization of the equations of motion is not dependent upon an

explicit form of the body equation, Equation 12, so long as the normal

derivatives of the equation are everywhere nearly perpendicular to the free-

stream direction. Thin lifting surfaces at small angle of attack satisfy this

condition and are treated herein and in Parts 2 and 4 of this report. The

special considerations required for thick bodies and high angles of attack are

treated in Parts 3 and 5. The following development is, therefore, restricted
to thin airfoils.

We first obtain the specialized form of Equation 7 when the uniform

stream velocity lies along the x-axis; i. e., W = 0 and, therefore, V = Ui,
U,0 = U. The velocity potential is

- Ux + q (13)

ard the velocity vector of a fluid element becomes

q (U + u) i + vj + wk (14)

where

v , and=

The perturbation velocities u, v, and w are assumed to be much smaller
than the free-stream velocity; i. e., u, v, w << U.

The linearization procedure when applied to Equation 10 yields the fully
linearized pressure coefficient

C u + U . (15)
U 2 ao

9



and when applied to Equation 6 yields the fully linearized unsteady flow
equation

a89' 89' 89'- 1 28B9' 89' 89 (16)
2! Z + 2 2 2 + 2U + = O 1 1 6 )

ax By Oz aco ax at

Next, we write the body equation for a thin, nonplanar lifting surface
(Figure 1), in terms of a curvilinear coordinate

s = s (y)

s represents the integral of distance along the line of the mean position of
the airfoil from the centerline to y,

s (y) =f y ds (17)
0

A Section A-A

L<I S

-. A

Figure 1. Generalized Curvilinear Planforrn
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The position of the surface in terms of s and n (the normal to S), is

separated into two parts; one part for the upper (or iner) surface, and the A
other for the lower (or outer) surface

B (x, n, s, t) = n - n (x, ) - (x, s, t) (18a)

I -- ., + P-V -V - * U J)

where nT(x, s) represents the thickness of the airfoil and n(x, s, t) repre-

sents the elastic deflection of the airfoil. In accordance with Equation 11,
we use the operator

i a + + k' (19)

ax as On

on Equation 18a to get

VB (x, n, s, ti n (x, s)+-n(x, s, t)

n (x , s) + nx a, t)+ k

OB T

Substitution into

8B,,Su (x, s, n, t) -- = + (Ui +v) V B = 0 (Z0)
at U.(0

of the equation for the upper surface, after higher order terms have been
discarded, gives

+U+ n(x, s, tI+ Ix, s) (Z1)
8n 'at ax ax T

11



The same procedure, for the lower surface, gives

8' =1- in (x, s. t)- n (X , -) 1
an 'at . .x s

1* Finally, we restrict the analysis to that class of problems in which the
effects of thickness on the time dependent forces can be neglected. By letting

nT(x, s) = 0 (23)

we get a single expression for the boundary condition

-( + U-x ) n (x, s, t) (24)

It is evident from Equation 24 that, when the motion of the surface is
simple harmonic motion,

n(x, s, t) = W(x, s) et (25

then,

jo (x, S, n, t) =(x, s, n) elWt (26)

Substitution of Equations 25 and 26 into Equations 15, 16, and 24
gives

= - (27)

2- 1 D2 V
V (P - 2 (28)

a 2 Dt 2

89' Dii

Bn Dt (29)

t12



where

- + 1i (30)

and

-- + - + - (31)
ax2 as2 n2

To this degree of approximation, M M, and a ac.
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IV. THE ACCELERATION POTENTIAL

PLANAR WINGS

Equation 27 shows that the. calculation of pressure requires taking
derivatives of the velocity putential, and Equation 29 states the boundary
condition which must be satisfied. Watkins, Runyan and Woolston
(Reference 1) solved this problem for planar surfaces in terms of a series
of pressure functions, or acceleration potential functions (4), where,

(x",y, Z) T (x,y, z) (32)

Integration of Equation 32 gives the general expression for the velocity
potential in terms of the acceleration potential:

.x x. X- ~- f " "[ i U
(x, y, z) = e J_ e 0 (, Z) dX (33)

if the velocity at infinity is V = Ui. The velocity potential due to a pulsating
doublet satisfies Equation 28 (in the planar case s = y and n = z); and, because
the order of operators is interchangeable, the acceleraion potential also
satisfies Equation 28.

A complete discussion of the application of boundary conditions in the
planar case is given in Section 6-4 of Reference 5. The application in the
nonplanar case is discussed in less detail in the following text.

NONPLANAR WINGS

In the nonplanar case, the acceleration potential at a point (x, *, N)
due to a pulsating doublet located at the point (t, r, n), or (. rj,1) in the
direction of n is

x, i, N) &.A 6 (34)



where

= cosy (T) siny (I) (35)

R = VX - ) 2+ 8 2 1y - TO + (z ~2I (36)

and Y(*1) is angle between the wing and the xy-plane at the point (, 1, ).
The perturbation velocity potential may be built up from a distribution of

doublets of acceleration potential over the wing. If A is the infinitesimal

doublet strength at (g,a , i ), the contribution toq from the doublet at this

point, from Equations 33 and 34, is

x- x - a13 a 8 j

-AxsN) a - Wn C

(37)
where

RI = x- Z+ 03 1(y-1)+ (z- Z]

and the velocity component normal to the surface at (x, sN) is

lim 8 
Aw(x,sO) = N-0 O Aq(xs,N) (38)

where

- cosy (y) - - - siny (y)j- (39)

Note that when the operator 8/8n is applied in Equation 37, the partials

8/83 and 8/8n maybe replaced by - 8/8z and - 8/8y, respectively.
Substitution of Equation 37 into Equation 38 gives

.i x__ x- iwo(X - MR')/Uj3 2

A U lima p e
Aw(x,s,0) = A e N--0O R' dX

-CO R

(40)

where the operator P is

16



P - cosy (y) siny (y) cosy (n) "sin (,j) (41)
I 8z Oy 8i z 9y,

and finally

A = 67pd d a- (42)41r p

and Ap is the complex amplitude of the difference in pressure on the upper
and lower sides of the surface at ( o),

(goa-) = Pu (9,o') - T (9,-) (43)

and dtd0- is the incremental area of the doublet sheet.

The normal wash at (x, s, 0) given by Equation 40 is that due to a
point pressure doublet at ( , a, n = 0). The total normal wash is the integral
over the surface of all the pressure doublets,

W(x, s,0) = - 1 a )K(x s, ao,M) dgd" (44)

U 41r pU 2

where f denotes the Mangler formula for evaluating infinite integrals

(Reierence 7 ), and the kernel of the integral equation is (omitting the
arguments w, M for brevity)

r x 02
Kira)-io i= - MR'/UB

o n 0 e P R
N-0

where

R r +z

r 1 2 +  Z 0

and

x 0 x-, Yo y y-1,andz 0 z
o10

17



Now, by putting k wr/U and v = X/Br1; tlhen, by putting
v -M 1 l+ V

I - M the integral in Equation 45 may be written

S0 i w(X - MR')/U62 d o -iklU

o R1 d% f Vf +-Co u

where

x - MR
0u I - -~

1 
21

By breaking up the interval of integration into three subintervals and
in the first two integrals letting u = w/i

1 -k w o -k1w u1  -ik 1 u

-=if 1f e 1 dw -jdo 0 V, v, 1 7 0 +u

or,

1 -k w Ul -ik u

I = (k )-i f dw- du (47)
0 0 ol - w 0

where Ko(k 1 ) is the modified Bessel function of the second kind and zeroth
order of the argument k 1 .

To obtain the analytic form of the kernel, we write the operator P
(Equation 41) in a more convenient form, taking advantage of the fact that
1o is a function of only r1 when x0 is held constant

PIo Cos [v(Y) - r1 8r0

+ Izocosv(Y) - Yosinv(y)J 0zo~ 0 ysiny(-q)JI (r.L~' (0. r r 8

18



The resulting kernel is

K(x Isfcr) 5 TPK(x fs~a)

0i T 1K I(x o , r) + T K (x,s, -))
eU 2 22~ (48)

where

T= Cos [v(Z)

10 -0 -0YT2 = - Cosy(s) - r iv2 O cosv(r) - sinV(r)I

(48a)

S, ( k (k xEe -k 1u 11we -k 1 w
K (x ~) k1 (k) e1 + ik1 f 2 ew

U 1  -ik Iu

+ ik, f ue d
d +u

+(x 2 0 0rx (Mr 1 + Ru -k2 'x0 RSLT kR 2ki 3+i

1 -k w 1 2-k w
- i we 1 dw -ik 2 f w e d

0o VF7 I - ,I TU-w

- ik 1 ue -ikl~ U1 u u+k-ik 1u d

19



2r1  
5 TIP o o'~

R = Xo+ 13rI

X -MR

r

13

kt - U(48c)

1 U

and Kl(k1 ) and K,(kI) are modified Bessel lunctior-s of the second kind and
first and second orders. The sub-bar indicates division by sTiP, esg.,
r= rl/STIP.

20



V. THE BOUNDARY CONDITIONS

The remainder of the problem is to match the boundary conditions; i. e.,
to find a pressure-loading function (, r) which, when inserted into

Equation 45 and integrated over the surface, yields the kinematic down-
washes at selected points on the surface w(x, s, 0).

In subsonic flow, the behavior of the pressure distribution is known in

the area of the wing edges from a few of the exact solutions in lifting surface
theory. In the neighborhood of the leading edge, the pressure should behave
as

lim

6- 0

In the neighborhood of the trailing edge and all edges parallel to the

free-stream direction, the pressure should behave as

lim

6-- 0

where 6 is the distance to the wing edge. Both Hsu and Watkins employ a

linear superposition of functions that satisfy these conditions. Hsu's

function differs from Watkins only in that for any given number of terms in

the series, Hsu's terms are linear combinations of Watkins terms. We use

a normalized form of the function given by Watkins:

U /2 - N M

U6a a a' ( ) (49)A ( )-b(a) I anm - n()(9

n=O 
m=O

where

fo( ) /1

21



U 29) = 1.0

U(~ -(2g U 1 +U 2 ) 35 nn Un- Un-2); ( +3 <

and

bTE - tLEb() = 2

The anmis are unknown pressure coefficients to be determined by matching

the kinematic downwashes at the selected points (xj, sr) on the surface.
Substitution of Equation 49 into Equation 44 leads to the matrix equation
given by Rodden and Revell (Reference 2) Equation 39, for the point set

Xj, 8r

-1 [rDiml am (50)

where, in this case,

1 1

DJ 1 - o- ff-x - g,_)ded (51)
-ll f n r

We now reexamine the fundamentals of the problem before proceeding
to evaluate the integrals in Equation 51 and thence to solve Equation 50.

One of the basic reasons for development of the kernel function method
is that pressure distributions over a continuous lifting surface are smooth
continuous functions that can be represented with reasonable eccuracy by a
series of analytic functions. We point out that fn(g) can be written

f (9) =
0 )

1l -

-2



I
and, therefore, the inner integral in Equation 51 may be written

I f (52)

where

P(o) = al- g)R(x.-, ,r

pn(g) = (1 - 'Z )Un(')(x - ,- ,-); 1 _n

Now, we assume for the moment that the kernel K(X- - 9, sr, (r) can be

represented with reasonable accuracy by a polynomial in V. Then, Pn(t)

is also a polynomial in g, and the Chebyshev-Gauss quadrature formula may

be used to obtain the exact value of the integral expression (52); i. e.,

1 P( d -) K M -(5afd= K Pn(gk)+E (2a)

-1 - kul

where

iZr P (ZK)()
2 K(Z)! 

n

and,

lXI <1.0

The error term E is zero if P is a polynomial of degree -< 2K - 1.
n

A more accurate formula which utilizes the fact that Pn(1 .0) = 0 is

used by Hsu (and by us)

f n (i) = ---- (+)Un()

23



Then, the inner integral in Equation 51 may be written
1

I,= fn ()d (53)
-1

where

Fo - r - )

Fn(t) = (1 +t) Un (t) K (x-, s ,.) 1 -n

This is evaluated bv the L-point Jacobi-Gauss quadrature with the weight
function V(1. - 6)/(1 + j,) (see Reference 8, Chapter 8). The resulting
formula

L
W k F n (k) (54)

k=l

is exact if Fn(i) is a polynomial of degree :5 ZL-1, which corresponds to
degree ZL for Pn(t ). Putting = -cos 0, the polynomials

* m~ =Cos (m +.L)e
cos 1 0

2

are orthogonal with respect to the weight function 11 - )/(i + )

-I +g 0, m An
.f ' m(Mtn(&) d&

This is easily verified by expressing the integral in terms of 0. Referring
to formulas in Reference 8, Chapter 8, Section 8.4, it can be shown, using
these polynomials, that Equation 54 takes the form

i L

f I -g F(id =H F (55)n 2L + I
- +2 k=l
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where

H = (i- k)Hk

and

k= -COS 1

In two-dimensional, steady, incompressible flow, there is an optimum

set of chordwise collocation stations (xi) for the determination of sectional
lift, depending upon the order of the polynomial required to adequately repre-
sent the downwash distribution

- / 2jx =- j = 1, 2, .... N. (56)

Since the behavior of the integrand for the chordwise loading is apt to
exhibit similar characteristics near the surface edges, it is inferred that this
set should also yield the best approximation in three-dimensional, unsteady,
compressible flow. Note that the number of collocation points is not required
to be the same as the number of integration points. As will be seen later, it
is only necessary that the total number of downwash collocation points be
equal to or greater than the number of pressure coefficients anm. When N
chordwise integration stations are used, the quadrature used to evaluate the
inner integral of Equation 51 is exact for integrands represented by a
polynomial of degree -< 2 N - 1.

Hsu shows that an optimum set of interdigitated spanwise collocation
stations and integration stations exists for evaluation of the outer integral
in Equation 51. By reasoning similar to that used to establish the chordwise
collocation stations, it was established that the optimum spanwise collocation
stations are

r
= -cos Tr, r = 1, 2, . M. (57)

It was observed that the quadrature for the integral of difference between the
actual and polynomial approximation of the spanwise loading is zero when the
actual loading is precisely represented by a polynomial of degree _< 2M - 1,
and the polynomial approximaiion is of degree =N - 1.
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.. .. .. . - - - -_ . .. . .. .. . . . . .. . . . . . .. .

Then, by substitution of Equation 55 into Equation 51,

11 1l~ V
D 1 - G (x., s, or d a (58)

nrn ri f nm- --1 (s r

where

Lz m _ 2 x r
:m 2 (1 - k) (-ar E) " k'±rGor ZL+ 1 k= 1( ~ ( Xj~~r

k11

L

nm ZL+ 1 _k ( k n k -r (xj*-)k' -2rJ ) ; I n

Hsu established the form of the Gaussian quadrature and the spanwise
integration stations. The difficulties of the singularity'of the kernel at• E= -n the #4'..,.-.- t-~.~

. and ... y of UifLerentiation with respect to (r (he uses the
steady-state lifting line formula to derive the form of the quadrature) are
avoided by removal of the singularity at (r = sr and then by an integration by
parts.

We first integrate by parts to get

i 1 1 _ 1 - G ( _ -, f , M)
D nm j -r -

nm 8 - 1 (s r -E)

which corresponds to Equation 58 in Reference 9. The Gaussian quadrature
formula is developed and shows that when the number of integration btations

is one greater than the number of collocation stations, and if they are inter-
digitated in the prescribed way
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M+ 1 (1 -__p) Gnm_ ,__p

nm 8r p M + 1 2= (sr - g p

- w (M + 1) Gnm (ij, r , 2r) (60)

where

rir
S=-COS --r

-r M+I

and

2p - 1
2(M+l) r

r1= 1, Z, . . . M

Evaluation of the second term in the brackets requires the observation
that the multiplier of K? in Equation 48 goes to zero whenever the collocation
point is in the plane of the doublet sheet located at the integration point.
Therefore, the finite part of the integral of the K2 term is zero, and the entire
contribution comes from the K1 term. Inthis case, y(s) = y(a-) and

U_.z = (_r - )2 = 0.

It can be shown that

-2, x >
K (x-. Sr, Sr ) =

Thus, the chordwise integral which defines Gnm (xj, Ar, sr) is

nm (xj r -r -2 f f n ed7

If the range of integration is extended to I = 1 by making the integrand
zero for E > Xj, the integral cannot be well appruximated by a polynomial
because it has a jump discontinuity at 9 = xj. To overcome this difficulty,
we write
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xjri fn( X ( ) "  I

Gn(X!, st, r = I ) 1 e 3 1I dt
nm f ( - n-1

(61a)

-2 rfX - f ( ) d .

The second term here depends on the integrals

x.

h (x .) f (g)d9n -1 n

which may be evaluated exactly. We have

hxx1
h'j (x jd+ si + Fi777oCj) f fJ Fl- d x

f - + sin x + +-I

This list may be extended as far as it is needed.

The first integral in Equation 61a is considered as an integral over
-1 < < 1 with zero integrand when g > xj, and Equation 55 is applied. The
result is

G s,) = - 2r m ( k)
om -r-r 2.L + I l

k 1 ei X (j1k< Xj

m
-2 ( g 0(x)

(61b)
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G (" o'm(1 - k 2 ) Ur() 2 e k
nm2j r - ZL+ I k-- 1 U k

k< Xi

- 2T gn (R), n> 1.

Equations 59 and 61 are used to evaluate the Di Is given by
Equation 60. Equation 50 is then used to determine the preseure coefficients
anm to match the downwashes (i. e. the Wi/Uls) at the collocation points
(xja sr). Once the pressure coefficients are determined, the generalized
forces are computed. A polynomial expression for the ith modal deflections
normal to the surface,

N M
n(i) (a, Z b (i) V T

0 0 VLL
v=0 i± =0

and Equation 49 are substituted into the equation

TIP XTE
Sf f (i) (j)

TIP XLE

to get
N M N M

Q T2 (1/2 PUl I I a (j ) b (i)
n = 0 r = 0 v= 0 0 nm v AQnmvi±i 62 .

where

1 1

fnvf 7om+ u Fn(*) dEd,
-1 - E+- 1

The quadrature formula given lby Equation 55 with L set equal to N may be
used to evaluate the inner integral. For evaluation of the outer integral, a
quadrature formula with the weight function /I- , analogous to Equation
60 for a nonsingular integral, may be used. This is not practical for a wing
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with folded tip, for which a different representation should be used on each
plane part of the surface. Here, the spanwise integral over one part of the
wing may have a square root factor at one end of the interval of integration,
or at neither end. Such integrals may best be evaluated by a suitable
application of ordinary Gaussian quadrature with a weight function of 1. 0.
The points and weights for this quadrature method are not given by simple
formulas such as Equation 55. They are listed in many places, (e. g.
Reference 5).
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VI. APPLICATION TO A WING WITH A FOLDED TIP

The planform may be any continuous surface. However, the computer
program was developed to treat either a planar or nonplanar planform of the
type show:* in Figure 2. (Only one-half the planform is shown.) To facilitate
modifications of the program, comment cards are placed throughout the
program to indicate where changes may be made to handle other nonplanar
surfaces like that of the Paraglider.

In the application of the kernel function method to the planform shown
in Figure 2, the computer program calculates from the equations of the
leading and trailing edges the collocation and integration points for which
the integrands of Equation 51 must be evaluated. For demonstration
purposes, we calculate the collocation and integration points for values of
L = 4, N = 6, and M = 10 and show the results in Figure 3.

XLE s tan% LE, XLETIP S FLan X LE + (s - s )tanXLFL LTP

xTE = 2b 0 +atan% TE, XTETIP 2bo+ sF tan ATE+(s SF tanXTETI

L  FL

b(s) = 1/2 (xTE -XLE)

x = /2 (xLE +xTE)

x = x + b(s) x

= 9 + b(u)

x. = - cos N-- - r, j = , ,. . .
x Cos F _+ll,2,... N.

2k - 1
9k = - cos L + r, k 1,,... L.

s s STIP
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2b. 
ALETIP

A' ATE
A'TETIP

TP 5TIP ~

Figure 2. Planar Wing With Planar Synmmetrically Folded Tips

*INTEGRATION STATIONS (L-4)

0 CHORDWISE COLLATION STATIONS (N *6)
AND SPAM'ISE INTEGRATION STATIONS

+ DOWNWASH COLLOCATION POINTS (M - 10)

Figure 3. An Optimum Set of Collocation and Integration Points
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2 = -COS-M-l m = 1,2,.. 0M.

i 2p- 1

0p = - Cos 2(M+ 1) r p ,,.. .,(M+ 1).

We have also constructed a table of equations (Table 1), for the
functions yo, zo, rl, T1 , and T 2 for use in the expression for the kernel,
Equations 48 through 48c. In Table 1, the subscript FL indicates the fold
line.

A difficulty .is encountered in the spanwi.se integration because the
kernel function has a finite discontinuity at the fold line. For example, note
in Table 1 the change in T1 and T 2 for receiving or collocation points on the
wing as the sending or integration points shift from the port tip to the wing
and from the wing to the starboard tip.

If we consider the kernel as a function of and.o for fixed values ofxands,

q( ,_.) = K (x

this function may be broken up into a simple discontinuous part g** and a
part g* which is continuous across the fold lines:

= 9 + g**(Z',o) (L3)

To do this, define

g( LEFL+) g( ,EFL-), E > gFL

= o <o <g (64)
-rL CrL

g9 a -EFL-)- g(9F aF+) < <rFL

and then define g* by Equation 63.

More explicitly, for _r > (rL, define

b b(g: + ~ +FL =(F L +-LE(FL) + TE FL J
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Then

=ST =W
g (,_ = K (x- F SFA )E - K (x- FLS,_ OF

L L L L

in which

=ST
Y(2:) = YTIP in K (ST - starboard tip)

=W (W - wing)
AT-) = 0 in K

A similar formula applies when a- < - E FL g ** may be written in a form

which indicates that it is independent of a- in each tip region:

g ST( ) > EFL

g*( 0" , < < o"(65)
s -FL - L

* PT(a), E < - z
- gFL

With the use of Equations 63 and 65, Equation 51 may be rewritten as

1 1
i i f 1 mf fD- / T n () g*,o) d do"
mn 87rn(g )

-i -l

1**

+8-r n( g ST (

1 -ZFL

+1 f-f0' **'-) f 4-7 c d-
gPr1  n PT -1

The first of these three double integrals is calculated according to Equation
60. In the others, the inner integral may be evaluated exactly. The
constants
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1

u = f _i 7 o- d o"

FL

are given by formulas

0 = -4 siFL L .F ]

1 2 3/2

etc.

In terms of these constants

1 1 -

rnn 8r . ..

f1=f 7~ 09) m* Z f f(-) g* * .d dE
-1 -1

1

+8"rn_ n(G) gT ) + ( l m gPT1 ( )j dE

The last integral in this formula is evaluated by Equation 55.

In the evaluation of 0. , , given by Equation 62 for the plane case, it is
assumed that modes numbers i and j are either both symmetric in a-, or both
antisymmetric. Then the contribution to the integral for o- < 0 is the same
as the contribution for a- > 0. Let the deflection in the i t l mode be given by

N M

V = 0 1 = 0 V l FL

n M N M

v= 0 0 V1 O:F L
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Then

N M N M

0..=z 2 1Z P 2 )SC I I Iij yTIP ( 2 P a= 0 m = 0 V 0 0

a 1( :(Ii)  '(1) + P ~) ( - 1
nm vg nm v j. v k. nmvkL

in which

L 1
i(l) 1 - rn +. f 1  F()ded_
nmvii -0 1 n

1 1

.i T F 2 m - F ()d d

Note that the inner integrals are the integrals of polynomials in multiplied

by (1 - E)/(l + ), by virtue of the relation

b(ff) + - VLE (7r ) + T (2 )]

Hence, the inner integral may be evaluated exactly by either Equation 52a or
Equation 55 if enough points are used in the formulas. For the limits v _< 5,
n -< 4 used in the computer program, six points are sufficient for Equation
52a, five points for Equation 55. Equation 52a was used with K = 6. (.This
choice was made arbitrarily; it would be just as good to use Equation 55. )

In the integrations over a., six-point Gaussian integration with weight
function 1. 0 was used. The basic formula is

1 6

J f(v)dv = hif(vf) (66)
0 A=

exact for f(v) a polynomial of degree at most 11. The constants occurring
in this formula are given in the subroutine FORCE. -They may be derived
from a table given by Scarborough (Reference 6, p. 148).
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In I ,Equation 66 is applied by puttingnmvgl

nT 1. v
0" = 0. V

_- FL

The resulting expression is

6 6
(1) = T m + k

nFL 2= 1 k= 1

in which

_EJ 9 FL V,
L

k()= b() k + -2 gE(fff ) + TE(ZP )

In I (n )  , the transformation

Tr = 1 - (1 - o )v
_ -FL

was used. This makes the v-integrand behave like a polynomial at the ends

of the interval. The resulting formula is

b 6
m~ 3 F +

L k=1

k (1 - k )Fn(k)

in which,

2o-0= -l ( I - _2 F )vf

k = b(g) k + - 1 LE + TE
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DESCRIPTION OF THE COMPUTER PROGRAM

A functional diagram of the computer program is given in Figure 4.
With the exception of two subroutines named MSIMEC and MSIMER, all of
the programs are written in Fortran IV. These two subroutines, written in
machine language, are used for complex and real matrix inversion,
respectively. There are certain limitations related to the various other
subprograms, which are listed below.

Subprogram Limitations

Subroutine Data

NCC The number of chordwise collocation stations must
be _ 10.

NCS The number of spanwise collocation stations must
be _ 9.

NDATA The number of sets of data must be - 10.

N The number of chordwise pressure modes _ 5.

M The number of spanwise pressure modes 5 5.

Subroutine Zen

MODES This is the number of modes used in the calculation
of generalized forces, and must be - 10.

NPTS For a planar wing, this is the number of points at
which the deflection is given in the horizontal
surface and must be 5 66. For a nonplanar wing,
there must be -5 66 points for the deflections in the
horizontal surface and _5 66 points for the deflections
in the vertical surface.
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START

The first set of data Is read. This Includes items 1-14 In the
DATRD data array, the Mach numbers and frequencies, Item 41, and

perhaps some of the mode data that will be needed later.

F Subroutine DATAl performs most of the calculations that are
DATA] Independent of Mach number and frequency, such as setting up

the arrays of collocation and integration stations.

This is the beginning of a loop that is gone through for each com-

3 DATA2bination of Mach number and frequency specified. Subroutine
DATA2 sets up the matrix (Di.) of Equation 50.

ZE4AR In subroutine ZEN, any niecessary data for the oscillation modesis read in. The left side of Equation 50 is set up for each mode.

Equation 50 is solved for the pressure coefficients for each mode
MSIMEC by MSIMEC.

Subroutine FORCE computes the generalized force matrix. The
FORCE program returns to step 3 until the Mach numbers and frequencies

are exhausted, then to step 1.

(.) RETURN TO BEGINNING FOR NEXT CASE

(cc) LOOP ON NUMBER OF SETS OF MACH NUMBERS
AND FREQUENCIES

Figure 4. Functional Flow Diagram-Main Program
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USE OF THE COMPUTER PROGRAM

The following rules apply to optimum use of the computer program:

1. Before attempting to use the computer program compute the
coefficients of polynomials of minimum order in x and y that
will adequately represent the modal deflection distributions.
Least-square fitted surfaces are very useful for this purpose,
since weighting factors may be used to obtain a better fit in
special regions.

2. Set the number of chordwise collocation points M equal to one
plus the highest of the orders in x; and, unless there is special
reason to reduce the number of chordwise integration points, set
L equal to M.

3. Set the number of spanwise collocation points R equal to one
plus the highest of the orders in y. This establishes the number
of pressure coefficients anm at M x R. Their values are
computed by matching exactly the downwashes at the M x R span-
wise collocation points.

The iapul.data is read by the subroutine DATRD. Use of this sub-
routine requires that, on each data card, the first 72 columns are six
fields of width 12, as indicated on the sample date sheets (Figure 5).
The first field contains an integer giving the location in the data array in
which the number in the second field is to be stored. The numbers in the
remaining fields are stored in consecutive locations. If a field is blank, the
corresponding location in the data array is unchanged. DATRD reads any
number of cards. A minus sign in column 1 indicates the last card to be
read; if this minus sign is not present, DATRD continues with the next card.
The storage locations of the data on a card are not affected by the sign in
column 1. All floating point numbers must be written with decimal points.
All integers must be at the right of their fields.

The data array is set up as follows:

1. N The number of cbordwilse preaure mo&s

2. M The number of spanwise pressure modes

3. NCC The number of chordwih collocation points

4. NCS The number of spanwise collocation points

5. NDATA The number of sets of values of Mach number and
frequency vo be used.

6. NSYM Indicaoc fx symmetric (NSYM = +1) oc
antisymmetric (NSYM = -I) modes of oscillation.
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7. SFOLD Distance spanwise from wing center line to fold line

8. STIP Semispan

9. DO One-half of the root chord

10. ALFA1 The fold angle (in degrees)

11. x LE The swetp angle of the leading edge (in degrees)

12. XTE

13. XLETp

14. XTETIp

21-30. Values of Mach number. NDATA of these must be entered.

31-40. Values of reduced frequenc NDATA of these must be entered.
W. DO/U.

41. NMOD The number of modes

42. JD Indicator for the type of input data for a mode. If
JD=I, the deflections are given at a set of points on

the wing (and tip). If JD=2, the coefficients of

polynomials for the deflection of the wing and tip

are given. If JD=0, the current mode and subsequent
modes are not given by data. They are the same as
the corresponding modes which were used for the

previous frequency and Mach number.

43. NPTSW Number of points on the wing at which deflections

are given (used if JD=I1).

44. NPTST Number of points on tip at which deflections are
given.

51-71. Deflection coefficients on the wing. The coefficients are stored as follows:

51 52 53 54 55 56 57 58 59

00 +a x+a x2 +a x3 +a x4 +a x5 + y(a 01+a x+a21x10 +a0 x 20 a30 a40 a50 012

60 61 62 63 64 65
+ a31 x3+ a 41 A + y2(a 02+a12 x+a 22x2+a x3 )

66 67 68 69 10 71

+ y3(a 03+a 13x+a 2 3x2) + y4(a 0 4 +a14 X) + a0 5Y5
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76-96. Deflection coefficients on the tip. Same storage rule as above, except all locations
are increased by 25.

98. Indicator that no more modes are
to be read after the present one.
(For current and subsequent
frequencies and Mach numbers.)

101-299. Deflection data at points on the
wing, in the order x1, s1, n1, x2 ,
s2, n2, etc.

301-499. Deflection data at points on the tip.

Items 1-41 must be read in the first set of data. There may be an
additional set of data for each mode, for each Mach number and frequency
case. After the indicator DAT(98) has been given a non-zero value, no more
deflection data will be read. After JD has been given the value zero, no
data will be read for the higher numbered modes.

The data in Figure 5 is for a 600 triangular wing folded at 75 percent
semispan, at an angle of 30*. The root chord is 5. 0 feet, making BO = 2. 5.
Three modes: plunge, pitch, and a third nonrigid mode are considered. The
Mach number is 0. 7, and six frequencies: 10, 20, 30, 40, 50, and 60 cps
are used. The speed of sound is taken to be 1000 ft. /sec. This gives reduced

frequencies of 0. 157, 0.314, 0. 471, 0.628, 0. 785, and 0. 942.

Three spanwise and three chordwise pressure modes, six chordwise
and eight spanwise collocation stations are specified.

In the set of cards numbered 15 - 30, which give deflection data, some
of the cards have been omitted. Otherwise, this is a complete set of data for

a computer run.
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1
Vl1. RESULTS

The computer program was applied to the rigid modes of two wings.

ASPECT RATIO 2. 0 RECTANGULAR WING FOLDED AT 80 PERCENT
SEMISPAN

CLais plotted as a function of Mach number in Figure 6. The
dashed curve is a plot of the approximation

27rA. R.

Z +V4 + (A.R.)2 (1_MZ)

where A.R. is the aspect ratio. This is formula (6-31) of Reference 5, for
the case of a rectangular wing.

TRIANGULAR WING WITH FOLDED TIPS

The configuration used was a triangular wing with a sweep angle of
65 degrees, folded at 60 percent semispan.

Figures 7 and 8 show CLaand Cmc as functions of fold angle
(at M = 0. 8), and as functions of Mach number. Figure 9 is a plot of
unsteady generalized forces for rigid oscillations of the wing in the pitching
mode.
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Figure 6. Lift and Moment Coefficients Vs Mach Number for
Aspect Ratio 2. 0 Rectangular Wing at Various Fold Angles
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Figure 7. Lift and Moment Coefficients Vs Fold Angle for
650 Triangular Wing at M, = 0.8
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Vill. CONCLUSIONS AND RECOMMENDATIONS

The results obtained by the nonplanar kernal function method show
the expected trend with increasing fold angle, which agrees with the
observed e-perimental trend. For zero fold angle, the method reduces to
that already used by Hsu (Reference 4).

Possible extensions of the method include the treatment of more
general configurations, or of other specific configurations, such as the T-
tail. Also, any generalizations proposed for the planar case should be
considered here, such as the problem of a nonplanar wing with a control
surface.

The formila that was used for the kernel function (page 19) should be
useful in any future developments using the three-dimensional kernel function.
The previously available formula was much longer. A special case of that
formula is given in Reference 12. The use of the simplified kernel function,
together with Hsu's method of integration, results in greatly reduced com-
puter running times. This makes it practical to use the kernel function
method as a tool in the preliminary analysis of new wing configurations.
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